# Normalized Vector Interpolation TL;DR

My blog posts often serve as “external memory”, allowing me to go back and remember how specific things work months or years after I spent the time to learn about them.

So far it’s worked amazingly well! Instead of having a hazy memory of “oh um… i did bicubic interpolation once, how does that work again?” I can go back to my blog post, find the details with an explanation and simple working code, and can very rapidly come back up to speed. I seriously recommend keeping a blog if you are a programmer or similar. Plus, you know you really understand something when you can explain it to someone else, so it helps you learn to a deeper level than you would otherwise.

Anyways, this is going to be a very brief post on vector interpolation that I want to commit to my “external memory” for the future.

This is an answer to the question… “How do I interpolate between two normalized vectors?” or “How do i bilinearly or bicubically interpolate between normalized vectors?”

As an answer I found the three most common ways to do vector interpolation:

• Slerp – short for “spherical interpolation”, this is the most correct way, but is also the costliest. In practice you likely do not need the precision.
• lerp – short for “linear interpolation”, you just do a regular linear interpolation between the vectors and use that as a result.
• nlerp – short for “normalized linear interpolation” you just normalize the result of a lerp. Useful if you need your interpolated vector to be a normalized vector.

In practice, lerp/nlerp are pretty good at getting a pretty close interpolated direction so long as the angle they are interpolating between is sufficiently small (say, 90 degrees), and nlerp is of course good at keeping the right length, if you need a normalized vector. If you want to preserve the length while interpolating between non normalized vectors, you could always interpolate the length and direction separately.

Here is an example of the three interpolations on a large angle. Dark grey = start vector, light grey = end vector. Green = slerp, blue = lerp, orange = nlerp. Here is an example of a medium sized angle (~90 degrees) interpolating the same time t between the angles. Lastly, here’s a smaller angle (~35 degrees). You can see that the results of lerp / nlerp are more accurate as the angle between the interpolated vectors gets smaller. If you do lerp or nlerp, you can definitely do both bilinear as well as bicubic interpolation since they are just regularly interpolated values (and then optionally normalized)

Using slerp, you can do bilinear interpolation, but I’m not sure how bicubic would translate.

## Code

Here’s some glsl code for slerp, lerp and nlerp. This code is for vec2’s specifically but the same code works for vectors of any dimension.

```//============================================================
// https://keithmaggio.wordpress.com/2011/02/15/math-magician-lerp-slerp-and-nlerp/
vec2 slerp(vec2 start, vec2 end, float percent)
{
// Dot product - the cosine of the angle between 2 vectors.
float dot = dot(start, end);
// Clamp it to be in the range of Acos()
// This may be unnecessary, but floating point
// precision can be a fickle mistress.
dot = clamp(dot, -1.0, 1.0);
// Acos(dot) returns the angle between start and end,
// And multiplying that by percent returns the angle between
// start and the final result.
float theta = acos(dot)*percent;
vec2 RelativeVec = normalize(end - start*dot); // Orthonormal basis
// The final result.
return ((start*cos(theta)) + (RelativeVec*sin(theta)));
}

vec2 lerp(vec2 start, vec2 end, float percent)
{
return mix(start,end,percent);
}

vec2 nlerp(vec2 start, vec2 end, float percent)
{
return normalize(mix(start,end,percent));
}
```